Das Geheimnis des Mifrofosmos

cochon von altersher war der Mensch beftrebt, in die Geheimnisse der Natur einzudringen und den Schleier zu lüften, der uns das Wesen der Maferie verbirat. Das Streben ging dabin, ein anschauliches Bild vom innern Bau der Körper zu schaffen, aus dem sich das Verhalten der Materie und ihre Gigenschaften versteben lieken. Dabei versuchte man, die Beseke des Makrokosmos auf den Mikrokosmos zu übertragen. Diese Bemühungen führten ichon fehr frühe zur atomistischen Auffaffung des Stoffes. Abendlande wurde die Atomtheorie durch Leukippos und seinen Schüler Demokrit begründet. Nach Demokrit, der um 420 v. Chr. lehrte, sind die Körper lediglich Unhäufungen von Utomen, die unteilbar und ungerftörbar, unendlich an Bahl, verschieden an Geftalt, Größe und Lage und in ewiger Bewegung find. Zwischen der alten und der heutigen Utomtheorie bestehen manche Berührungspunkte, aber auch tiefgreifende Unterschiede. Der Grundgedanke jedoch, daß es legte Baufteine der Materie gibt, ift beiden gemeinsam. Die Atomtheorie ist im Laufe der Jahrhunderte nie wieder gang aus der Wiffenschaft verschwunden, aber fie trat lange Zeit neben andern Unfichten über die Natur der Rörper ftart in den Sintergrund. Mit dem Aufblüben der Physit und der Chemie in den legten Jahrhunderten nahm auch die Utomtheorie einen neuen Aufschwung, und heute beherrscht sie die ganze Naturwissenschaft. Ihre großen Fortschritte in unserem Jahrhundert verdankt sie an erfter Stelle der Physit. Ihrer bewährten Methode getreu, ließ die Physit fich durch Experimente leiten. Ginige der Fortschritte und die Richtungen, die die Utomphusik eingeschlagen hat, sollen in diesem Aufsake beschrieben werden.

Leaf man eine hobe elektrische Spannung, etwa die beiden Pole einer ftarken elektrischen Batterie oder die Pole einer Influenzmaschine, an die beiden Glektroden einer Beiglerschen Röhre 1, fo findet man, daß eine Strahlung von der negativ geladenen Elektrode (= Rathode) ausgeht. Man hat diese Strahlen Rathodenstrahlen genannt. Gie find nicht direkt fichtbar. Kallen fie aber auf einen fluoreszierenden Schirm, dann erzeugen fie auf diesem einen leuchtenden Fled und werden fo in ihrer Wirkung dem Muge mahrnehmbar. Stellt man ein leicht bewegliches Flügelrädchen in geeigneter Weise in den Strahlengang, dann gerät das Rädchen in febr rasche Umdrehungen. Man gewinnt den Eindruck, daß kleine Geschoffe von der Rathode ausgehen und auf das Klügelrädchen prallen. Mus diesem und aus ähnlichen Versuchen hat man den naheliegenden Schluß gezogen, daß die Rathodenstrahlen aus rasch beweaten körperlichen Teilchen bestehen (Korpuskularstrahlen). Legt man an die Seiten der Röhre eine elektrische Spannung, etwa die Pole einer elektrifchen Batterie, fo, daß dieses neue elektrifche Feld fenkrecht zur Bewegungsrichtung der Korpuskeln fteht, dann wird der leuchtende Fleck auf dem Schirme ftart verschoben, die Strahlen werden somit durch das angelegte

¹ Eine Geißlersche Röhre ist eine Glasröhre mit eingeschmolzenen Metallplättchen (= Elektroden), in de ch irgend ein stark verdünntes Gas unter sehr niedrigem Drucke befindet.

elektrische Feld aus ihrer Richtung abgelenkt. Legt man in ähnlicher Weise ein Magnetfeld an die Röhre, dann ersieht man aus der Verschiebung des Leuchtslecks, daß die Kathodenstrahlen auch durch ein magnetisches Feld aus ihrer Richtung abgelenkt werden. Diese hier nur qualitativ geschilderten Versuche lassen sich so anordnen und verseinern, daß sie sich für Meßzwecke eignen. Dabei ist man zu folgenden wichtigen Ergebnissen gekommen.

Aus der Richtung der Ablenkung folgt, daß die Teilchen eine negative La-

dung besigen.

Aus der Größe der Ablenkung der Strahlen, der bekannten elektrischen Spannung an den beiden Elektroden und den gleichfalls bekannten Feldstärken der seitlich angelegten elektrischen und magnetischen Felder konnte man das Verhältnis: Ladung zu Masse (— spezifische Ladung) bestimmen. Die spezifische Ladung $\frac{e}{m}$ (e= Ladung, m= Masse) ist unabhängig vom Gase,

das sich in der Röhre befindet, d. h. sie ist dieselbe für alle Gase 1.

Hermit ist uns jedoch nur das Verhälfnis von zwei Größen gegeben. Wenn es gelingt, eine der beiden Größen durch eine andere unabhängige Messung zu bestimmen, so läßt sich die andere Größe berechnen. Die Teilchen — man nennt sie heute Elektronen — treten nun aber auch bei andern Versuchen auf. Wenn man einen Draht erhist, oder ein Metall mit ultraviolettem oder mit Röntgenlicht bestrahlt, treten Elektronen aus. Man ist somit bei der Untersuchung nicht einzig und allein auf die Elektronen in Geißlerschen Röhren angewiesen. Es ist mit sehr genauen Methoden gelungen, die Ladung der Elektronen zu messen. Man nennt sie die Elementarladung. Sie ist eine allgemeine Naturkonstante. War nun einmal die Ladung e bekannt, dann ließ sich auch die Masse m der Elektronen aus der spezisischen Ladung sie berechnen. Man fand für m rund $\frac{1}{1800}$ der Masse des Wasserstoffatoms. Das ist die kleinste bis jest bekannte Masse. Auf denselben Wert für m führt die Vergleichung der spezisischen Ladung des Wasserstoffatoms bei der Elektrolyse mit der spezisischen Ladung der Elektronen in der Geißlerschen Röhre.

Elektronen treten auch frei in der Natur als se Strahlen beim radioaktiven Zerfall auf. Das häufige Vorkommen der Elektronen hat den Schluk nabe-

gelegt, daß sie zu den legten Baufteinen aller Utome gehören.

Auch von der positiven Elektrode (Anode) der Geißlerschen Röhre gehen Strahlen aus. Auch diese Strahlen lassen sich, ähnlich wie die Kathodenstrahlen, durch elektrische und magnetische Felder aus ihrer Richtung ablenken. Sie sind ebenfalls Korpuskularstrahlen, aber mit einer positiven Ladung. Ihre spezisische Ladung $\frac{e}{m}$ ist verschieden je nach dem Gase in der Röhre. Man fand für $\frac{e}{m}$ denselben Wert wie bei der Elektrolyse. Daraus folgt, daß die Anodenstrahlen (man nennt sie auch Kanalstrahlen) aus gesadenen Utomen bestehen.

So ist man zu der Folgerung gekommen, daß, grob ausgedrückt, jedes Utom aus zwei Arten von Bausteinen aufgebaut ist, aus den negativ geladenen Elek-

¹ Verwicklungen treten nur ein, wenn die elektrische Spannung, die an die Röhre gelegt wird, zu hoch ist. Dann werden die Geschwindigkeiten der Teilchen zu groß und die Masse m zeigt dann eine Abhängigkeit von der Geschwindigkeit der Teilchen. Zu hohe Spannungen lassen sich aber vermeiden.

tronen (dieselben in allen Elementen) und aus positiv geladenen Teilchen, die charakteristisch sind für die einzelnen Elemente. Diese positiven Teilchen nennt

man ganz allgemein Utomterne.

Die Masse eines Atombernes ist immer "nahezu" ein ganzes Vielfaches der Masse des Wasserstoffatoms. Das legte den Gedanken nahe, daß die Utomberne selbst wieder aus Wasserstoffkernen zusammengesetzt sind. Diese letzten Bausteine der Utomberne nennt man Protonen. Jeder Utombern ist somit charakterisiert durch eine ganze Zahl, d. h. durch die Zahl der Protonen, die ihn aufbauen. Diese Zahl stellt im wesentlichen das Utomgewicht des Elementes dar. Man bezieht jedoch heute die Utomgewichte nicht auf das Utomgewicht des Wasserstoffs als Einheit, sondern auf das Utomgewicht des Sauerstoffs, das man als 16 annimmt. Beispielsweise seien einige Utomgewichte hier wiedergegeben:

Atomgewicht von Wasserstoff (H) = 1,008.

" Helium = 4, d. h. nahezu 4 mal Atomgew. von H.

" Kohlenstoff = 12, d. h. nahezu 12 mal Atomgew. von H.

" Neon = 20,2, d. h. nahezu 20 mal Atomgew. von H.

Es springt in die Augen, daß alle Atomgewichte nahezu ganze Vielfache des Atomgewichtes von H sind. Auf die Abweichungen von der Ganzzahlig-keit werden wir weiter unten noch zurücktommen müssen.

Da die Protonen positiv geladen sind, so muß der vorwiegend aus Protonen aufgebaute Kern eine positive Ladung aufweisen, wie es sich auch tatsächlich im Experimente gezeigt hat. Wählt man nun als elektrische Einheitsgröße die Größe der Ladung eines Elektrons, so erhält man eine zweite charakte-

riftische Rahl für die Utomberne, ihre Rernladungszahl.

Weitere Aufklärung über die Atome haben die Köntgenspektren gebracht. Läßt man gewöhnliche Köntgenstrahlen auf einen Körper fallen, so werden die Atome des getroffenen Körpers ihrerseits zur Aussendung anderer Köntgenstrahlen angeregt. Diese neuen Köntgenstrahlen bilden ein Spektrum, das aus scharfen Linien (Linienspektrum) besteht. Mit bekannten physikalischen Methoden kann man die Wellenlängen für die entsprechenden Linien sehr genau messen. Es hat sich nun herausgestellt, daß diese Linienspektren von der Art der Utome abhängen, aus denen der getroffene Körper aufgebaut ist. Deshalb hat man diese Köntgenstrahlung als charakteristische Köntgenstrahlung bezeichnet. Der Typus des Spektrums, d. h. die allgemeine Anordnung der Linien, ist für die verschiedenen Elemente gleich.

Es zeigte sich auch, daß für Elemente mit höherem Utomgewichte die gesamte Strahlung kurzwelliger ist als für Elemente mit niederem Utomgewichte; d. h. mit steigendem Utomgewichte sindet eine Verschiebung des ganzen Spektrums nach kürzeren Wellenlängen statt. Moselen erkannte, daß man mit Hilfe der charakteristischen Röntgenstrahlung alle Grundstoffe in eine "natürliche" Reihe einordnen kann. Diese natürliche Reihe stimmt im allgemeinen mit der Reihe überein, die man erhält, wenn man die Elemente nach steigenden Utomgewichten ordnet. Auf diese Weise ergaben sich im natürlichen System 92 Pläge. Wassertoff nimmt den ersten, Helium den zweiten, Uran den 92. Plag ein. Man hat diese Pläge numeriert und die Plagnummer eines Elements im System kurz seine Drd nungszahl genannt. Die Korrespondenz zwischen

Wellenlänge und Ordnungszahl läßt sich mathematisch ausdrücken. Mit Hilfe dieses mathematischen Zusammenhanges war es möglich, die Röntgenspektren auch für solche Elemente zu berechnen, die man noch gar nicht in der Natur

gefunden hatte.

Das System der Elemente wies Lücken, d. h. unbesetze Pläge auf. Die Röntgenspektren der Elemente, die diese Pläge einnehmen, konnte man nun aus der Ordnungszahl des freien Plages berechnen und dann die für das Vorkommen des Elementes in Frage kommenden Mineralien systematisch auf das Auftreten der berechneten Spektren untersuchen. Auf diese Weise ist es gelungen, die Elemente Hafnium, Masurium, Rhenium und Illinium zu entdecken.

Bei Wasserstoff und bei Helium stimmt die Ordnungszahl mit der Kern-ladungszahl überein. Der Gedanke lag nahe, versuchsweise ganz allgemein die Ordnungszahl mit der Kernladungszahl zu identifizieren. Diese etwas kühne Unnahme hat sich in der Spektralanalyse als richtig erwiesen. Eine unmittelbare experimentelle Bestätigung hat sich auch noch in den Versuchen über den Durchgang von a-Strahlen durch dünne Metallfolien (Platin, Silber und

Rupfer) gefunden.

In normalem Zustande sind die Atome ungeladen. Die positive Kernladung muß somit durch negative Ladungen neutralisiert werden. Wir müssen deshalb annehmen, daß der Kern von einer negativ geladenen Elektronenwolke umgeben ist. Soll nun eine vollständige Neutralisierung der Kernladung eintreten, so muß die Zahl der Elektronen um den Kern gleich der Kernladungszahl (= Drdnungszahl) des Elementes sein, z. B. 92 beim Uran. Sinen ersten Ausschluß über die Anordnung der Elektronen gibt uns der Durchgang von a-Teilchen durch Materie. Sin a-Teilchen kann Tausende von Atomen durchqueren, ohne eine merkliche Anderung seiner Richtung zu erfahren. Bisweilen aber ruft, wie die Wilsonschen Photographien zeigen, ein einziges Utom eine Ablenkung des a-Teilchens um einen sehr großen Winkel hervor. Diese merkwürdige Tatsache läßt sich ungezwungen durch die Annahme erklären, daß zwischen den Elektronen und dem Kerne ein relativ großer Ubstand besteht, und daß der Utomkern nur einen sehr geringen Teil des Gesamtvolumens des Utomes einnimmt.

Hieraus ergibt sich, daß die Elektronen den Kern umkreisen müssen. Die negativ geladenen Elektronen werden nämlich von dem positiv geladenen Kern kräftig angezogen. Diese anziehende Kraft muß durch eine gleich große, aber entgegengesett gerichtete Kraft kompensiert werden. Als solche kann aber nur eine Fliehkraft in Frage kommen, wie sie bei allen Kreisbewegungen auftritt. So wird man naturgemäß auf das Rutherfordsche dynamische Atommodell geführt. Jedes umlaufende Elektron ist einem elektrischen Strome gleichwertig, der stetig seine Richtung ändert und in seiner Umgebung ein elektromagnetisches Feld erzeugt. Nach der klassischen Physik wird die Energie dieses Feldes als Licht ausgestrahlt. Die ausgestrahlte Energie stammt vom bewegten Elektron. Dieses muß daher ständig Energie verlieren. Das führt zu zwei wichtigen Folgerungen. Erstens: Das Elektron muß sich auf einer Spiralbahn bewegen, sich immer mehr dem Kern nähern und schließlich in den Kern hineinstürzen, d. h. das Utom kann nicht stabil sein. Zweitens: Das

ausgestrahlte Licht muß ein kontinuierliches Spektrum besigen. Beide Folgerungen widersprechen der Erfahrung: Die Utome sind stabile Gebilde und die Spektren der Grundstoffe sind diskontinuierliche Linienspektren. Hier versagt somit die klassische Physik, oder aber das Rutherfordsche Utommodell entspricht nicht der Wirklichkeit.

Der dänische Physiker N. Bohr entschlok sich, das Rutherfordsche Utommodell beizubehalten und die Gefege der flaffifchen Phyfit aufzugeben. Bur Lösung der bestehenden Schwierigkeiten zog er die Quantenthe orie heran1. Es gelang ihm damit, beider Schwierigkeiten Berr zu werden. In der Theorie von Bohr haben wir uns die Utome wie kleine Planetensusteme vorzustellen. In der Mitte befindet fich der Utomkern. Er entspricht der Sonne in unserem Planetensustem. Um diesen Zentralkörper treisen die Elektronen (Planeten) aber nicht in beliebigen, fondern in gang gesehmäßig bestimmten Bahnen. Die Bahnaeleke machen wir uns am besten am Wasserstoffatom, dem einfachsten bon allen Utomen, tlar. Es besitt einen einfachen Rern (Zentralkörper) und nur ein einziges Clektron (Planet). Ein Zweikörpersyftem dieser Urt läßt fich mathematisch erakt beschreiben. Die möglichen Bahnen des Elektrons find Rreise oder Ellipsen. Für unsern 3med genügt es, nur die Rreisbahnen gu betrachten. Für Rreisbahnen gelten nach Bohr zwei Quantenbedingungen. Die fog. 2. Quantenbedingung befagt, daß nur gang beftimmte Cleftronenbahnen zulässig find 2. Solange das Elektron sich in einer solchen Bahn bewegt,

Die Grundanschauung der Quantentheorie fann man fich am konkreten Falle der Lichtstrahlung klarmachen. Newton nahm an, daß die Lichtemission in der Aussendung unwägbarer, materieller Teilchen von der Lichtquelle bestehe. Es zeigten fich jedoch bald Schwierigkeiten, Die Die Theorie nicht überwinden konnte. Hungens begründete deshalb die Wellentheorie des Lichtes, gemäß der das Licht ein Schwingungsvorgang im Ather ift. Kaft 200 Jahre mahrte der Rampf zwischen beiden Unsichten, dann mandte fich der Sieg entschieden der Bellentheorie gu. Nach diefer Theorie war die Lichtemission und überhaupt jede Strahlung ein stetiger Borgang. Die Strahlungsenergie müßte demnach in jeder beliebigen endlichen Menge auftreten und beliebig teilbar fein können. Allein bald trat wieder eine große Schwierigkeit auf. Es wollte in keiner Weise auf Grund Dieser Unnahme gelingen, ein Strahlungsgeses aufzustellen, das mit allen wohlverbürgten Tatsachen übereinstimmte. Planck (1900) ließ deshalb die Unnahme, daß die Energiestrahlung ein kontinuierlicher Vorgang sei, fallen. Er stellte den neuen Grundsag auf, daß die Utome Strahlungsenergie von gang genau bestimmten endlichen Beträgen aussenden: E = hv, wo E den ausgestrahlten Energiebetrag, v die Schwingungszahl, d. h. die Bahl der Schwingungen in einer Gekunde, und h eine univerfelle Naturkonftante, das fog. elementare Wirkungsquantum, bedeutet. Den endlichen Energiebetrag hv nennt man ein Quant. Demnach hat jede Strahlungsenergie fogufagen eine atomifche Struktur. Mit Diefer Unnahme mar es möglich, ein Strahlungsgeset aufzustellen, das den Beobachtungen gerecht wurde. Die auf dieser Unschauung aufgebaute Theorie heißt die Quantentheorie. Die Lehre ist dann noch weiter von Einstein ausgebildet worden. Bis zu einem gewissen Grade bedeutet sie eine Rückkehr zur ursprünglichen Emissionstheorie von Remton. Der Unterschied gwischen den beiden Emissionstheorien liegt vorwiegend in der verschiedenen Auffassung der ausgesandten Teilchen. Nach Newton handelt es sich um unmägbare, materielle Teilchen. Bei Pland hingegen um Energieteilchen (Quanten), denen nach Einstein auch noch Trägheit gutommt.

Das Clektron kann nur solche Bahnen beschreiben, für die sein Drehimpuls multipliziert mit 2π ein ganzes Vielfaches des elementaren Wirkungsquantums h ist. (Der Drehimpuls wird durch mrv ausgedrückt, wo m= Masse, r= Abstand vom Zentrum, r= Bahngeschwindigkeit). Ist r= Winkelgeschwindigkeit, dann ist r= w und der Drehimpuls r= mrr= w. Die Gleichung lautet somit r= m r= w r= n h, wo r= ganze Zahl. Für r= 1 erhält man die Grundbahn des Elektrons.

strahlt es nach Bohrs Unnahme keine Energie aus, entgegen der Unnahme der klassischen Physik. Zur 2. Quantenbedingung kommt noch eine weitere, die sog. 1. Quantenbedingung kommt noch eine weitere, die sog. 1. Quantenbedingung. In einer Bahn mit großem Durchmesser besitzt das den Kern umkreisende Elektron eine größere Energie als in einer kernnäheren Bahn. Tritt nun aus irgend einer Ursache ein Zusammenbruch des Systems, eine Katastrophe, ein, sodaß das Elektron aus der höheren, energiereicheren in die niedere, energieärmere Bahn stürzt, dann wird nach der 1. Quantenbedingung die Energiedisserenz in beiden erlaubten Bahnen in Form von Strahlung nach außen abgegeben 1. Mit Hilfe dieser etwas befremdlichen Unnahmen gelang es Bohr, für das Linienspektrum des Wasserstoffs eine Gleichung abzuleiten, die mit einer früher rein empirisch abgeleiteten Gleichung übereinstimmte. Diese empirische Gleichung enthielt aber einen Zahlensaktor, über dessen physikalischen Sinn man bis dahin nichts auszusagen vermocht hatte. In der Bohrschen Theorie erhielt dieser Zahlensaktor eine ganz bestimmte physikalische Bedeutung. Das waren unzweiselhafte, große Erfolge der neuen Theorie.

Wir verlassen nun das Wasserstoffatom und wenden uns den Grundstoffen mit mehr als einem Elektron zu. Die Theorie ist hier zu folgenden Ergebniffen gekommen. Die Bahl der äußern Elektronen ift gleich der Ordnungszahl, d. h. gleich der Kernladungszahl des Elementes. So hat z. B. Uran die Ordnungszahl 92. Es werden ihm deshalb 92 äußere Elektronen zugeschrieben. In dieser Elektronenwolke, die den Rern umkreift, herrscht Ordnung. Man denkt sich die Elektronen in wohl definierten Schalen angeordnet. N. Bohr ift es gelungen, auch den Aufbau der einzelnen Glektronenschalen mit großer Wahrscheinlichkeit darzustellen. Er ging bei seinen Untersuchungen von dem physikalischen und chemischen Verhalten der Grundstoffe und von ihrer Stellung im periodischen Systeme aus. Er fand, daß der Aufbau der einzelnen Schalen ganz gesehmäßig mit der Zunahme der Elektronenzahl in ben Utomen verläuft. Entsprechende, fertig ausgebaute Schalen in verschiedenen Elementen find einander gleich. Unterschiede treten erft in den unfertigen äußersten Schalen auf. Ein Beispiel moge das klarmachen. Ralium (K) hat 19 äußere Clektronen, Calcium (Ca) hat deren 20. Bei beiden Elementen find die Elektronen so angeordnet, daß die innerfte Schale mit 2, die beiden folgenden mit je 8 Elektronen besett find. Allein bei K hat die äukerste Schale nur 1, bei Ca jedoch 2 Elektronen.

Aber damit war nur die tatsächlich vorhandene Arithmetik im periodischen Systeme festgestellt, sie war noch nicht auf ein einheitliches Prinzip zurückgeführt. Erst das Paulische Prinzip vollbrachte diese Leistung.

Im Jahre 1913 führte Bohr mit den gequantelten Kreisbahnen des Elektrons eine Quantenzahl in die Utomtheorie ein. Man bezeichnet sie heute als die Nebenquantenzahl. Zwei Jahre später vervollkommnete Sommerfeld die Bohrsche Theorie, indem er neben Kreisbahnen auch Ellipsenbahnen für die umlaufenden Elektronen zuließ. Diese Erweiterung führte mit Notwendigkeit zur Einführung einer zweiten Quantenzahl, der sog. Hauptquantenzahl. Im Jahre 1925 erkannte man, daß den umlaufenden Elektronen auch noch

 $^{^1}$ Sind E_1 und E_2 die Energien des Elektrons in beiden Bahnen, so besagt die 1. Quantenbedingung $E_1-E_2=h\,\nu$.

eine Rotation um ihre eigene Uchse zukomme. Damit war die Analogie zwischen Atom und Planetensystem vollständig. Ein rotierendes Elektron verhält sich aber im Magnetselde wie ein winziger Magnet. Dieser "Elektronenspin" verlangte somit die Einführung einer dritten Quantenzahl. Zu einer vierten Quantenzahl wurde man durch folgende Überlegungen geführt. Jedes Elektron im Atom hat zwei Drehimpulse, einen infolge seines Umlauss um den Kern, den andern infolge seiner Eigenrotation (Spin). Bilden wir nun die vektorielle Summe aller Drehimpulse aller Elektronen im Atom, dann erhalten wir den gesamten Drehimpuls des ganzen Utoms. Dieser resultierende gesamte Drehimpuls des Utoms verlangt eine vierte Quantenzahl für jedes Elektron. Jedem Elektron im Utom kommen somit vier Quantenzahlen zu; sie bestimmen den Zustand des Elektrons, d. h. seine Bahn, seine Energie und seine Drientierung im Raume.

Das Paulische Prinzip besagt nun, daß in einem Atom niemals zwei Elektronen in allen vier Quantenzahlen übereinstimmen können, mit andern Worten, es sei unmöglich, daß sich zwei oder noch mehr Elektronen, die den Atomkern umkreisen, im gleichen Zustande besinden. Mit Hilfe dieses Prinzips ist es gelungen, die maximalen Besetzungszahlen der einzelnen Elektronenschalen im Atom zu bestimmen. Für die innerste Schale fand man 2 Elektronen, für die folgenden Schalen 8, 8, 18, 18 und 32 Elektronen. Das sind aber ganz dieselben Zahlen, die die Längen der einzelnen Perioden im periodischen System kennzeichnen, und die man längst kannte. So hat das Paulische Prinzip den innern Grund der bereits bekannten Urithmetik des periodischen Systems aufgedeckt. Bisher sehlt es noch an seder Erklärung des Paulischen Prinzips. Es hat sich sedoch für die Deutung des Aufbaues der Atome, insbesondere für die Zahl der Elektronen in den einzelnen Schalen, so ausgezeichnet bewährt, daß man es als durch die Erfahrung bestätigt ansehen muß.

Mit Hilfe des Bildes der Anordnung der Elektronen in Schalen ist es möglich gewesen, sich über viele atomare Vorgänge Rechenschaft zu geben. Die chemischen Kräfte, die im Grunde elektrischer Natur sind, entstammen der unfertigen, d. h. der nicht vollbesetzten äußersten Schale. Ist die äußerste Schale voll mit Elektronen besetzt, so ist das betreffende Element chemisch inaktiv. Das erklärt die Inaktivität der Edelgase, bei denen die äußersten Schalen nach der Theorie vollbesetzt sind. Das periodische und der Elemente, das die Chemiker auf Grund der Atomgewichte und der chemischen Eigenschaften der Grundstoffe schon viel früher aufgestellt hatten, wurde verständlicher. Auch die Spektren der Elemente verloren viel von ihrem geheimnisvollen Charakter. Die optischen Spektren konnte man durch Sprünge der der äußersten Schale angehörenden Elektronen aus einer erlaubten Bahn in eine andere deuten. Die Röntgenspektren hingegen rühren von Quantensprüngen her, die zwischen den einzelnen innern Elektronenschalen erfolgen.

¹ Unter Bektor versteht man eine Größe, die durch Angabe einer Zahl und einer Richtung bestimmt wird; eine Kraft ist also ein Bektor. Das Parallelogramm der Kräfte ist ein Beispiel einer vektoriellen Summenbildung. Die Diagonale des Parallelogramms ist die vektorielle Summe der beiden Kräfte.

Aufschluß über den Bau der Kerne erhalten wir vor allem aus dem Atomzerfall. Der natürliche Zerfall radioaktiver Stoffe ist ein Vorgang, der sich durch keine uns zu Gebote stehenden Mittel beschleunigen oder verlangsamen läßt. Das drängt zur Annahme, daß dieser Vorgang sich im Innersten des Atoms, im Atomkerne, abspielt. Hierbei werden α-, β- und γ-Strahlen ausgesandt. Die α-Strahlen erwiesen sich als identisch mit Heliumkernen. In den β-Strahlen erkannte man rasch bewegte Clektronen. Die γ-Strahlen sind Energiequanten. Sie sind mit den Köntgenstrahlen verwandt, von denen sie sich nur durch ihre höhere Schwingungszahl unterscheiden. Es ist aber auch gelungen, eine ganze Reihe stabiler Grundstoffe zu zertrümmern. Bei all diesen Versuchen wurden Wasserstoffkerne von den Utomen abgetrennt.

Sanz allgemein lassen sich somit dreierlei Bausteine der Atomkerne nachweisen: Elektronen, Wasserstoffkerne (Protonen) und Heliumkerne (4 Protonen und 2 Kernelektronen), die vermutlich eine gewisse Selbständigkeit bewahren. Zurzeit haben wir noch keine vollständige Theorie des Kernausbaues. Es ist aber gelungen, eine Reihe bedeutungsvoller, die Kernstruktur betreffender Gesehmäßigkeiten aufzusinden. Zu diesen Gesehmäßigkeiten gehört vor allem die Tatsache, daß ein Element mit gerader Ordnungszahl (somit einer geraden Zahl von Protonen) in der Natur häusiger auftritt als seine beiden Nachbarn im natürlichen System mit ungerader Ordnungszahl (Protonenzahl). Hinsichtlich der Protonenzahl gilt die Regel, daß Elemente mit einer durch 4 teilbaren Protonenzahl sich durch besondere Häusigkeit auszeichnen. Ferner hat sich ergeben, daß die Zahl der in den Kern eingebauten Elektronen

für die überwiegende Zahl von Grundstoffen gerade ist.

Es tritt aber noch eine Schwierigkeit auf. Wenn die Atomkerne lettlich aus Wasserstoffkernen aufgebaut sind, dann follte man erwarten, daß alle Utomgewichte (auf Wasserstoff bezogen) ganzzahlig seien. Das trifft aber ganz auffällig nicht zu. Diesem Ginwande kann man auf folgende Weise begegnen. Die Stellung eines Elementes im periodischen Systeme hängt von seiner Rernladung und die wieder von der Zahl der Protonen und Glektronen im Rerne ab. Fügt man nun zum Kern ein Proton und zugleich auch ein Elektron, fo bleibt die Kernladung ungeändert, das Element behält feinen Plag im periodischen System. Seine chemischen Eigenschaften haben sich nicht gewandelt, aber sein Utomgewicht hat um eine Einheit zugenommen. Der Fall ift somit denkbar, daß es Elemente mit denselben chemischen Eigenschaften, aber mit verschiedenen Utomgewichten gibt. Durch teine chemische Unalyse ließen sich solche Elemente voneinander trennen. Schon im Jahre 1910 wurde die Unsicht ausgesprochen, daß die Utomgewichte aller Elemente ganzzahlig seien, daß Elemente, die von der Ganzzahligkeit abweichen, Mischungen von Elementen seien, deren Utomgewichte fich um eine oder um mehrere Einheiten unterscheiden. Bei den Atomgewichtsbestimmungen nach den herkömmlichen chemischen Methoden werde nur das mittlere Utomgewicht der Mischung bestimmt. Die einzelnen Utomarten der Mischung nennt man Isotopen.

Im Jahre 1913 gelang es, mit physikalischen Methoden die Richtigkeit dieser Unnahme für Neon nachzuweisen. Seitdem hat man die Untersuchungs-

methoden sehr verfeinert, so daß wir heute eine große Zahl von Notopen fennen. Die meiften bekannten Elemente haben folche Jfotopen. Ihre Ungahl ift aber bei den einzelnen Grundstoffen fehr verschieden. Gifen und Binn mogen als Beispiele dienen. Die Chemiter fanden für das Utomgewicht des Gifens 55.84. In Wirklichkeit ift aber das gewöhnliche Gisen kein reines Element. Es ist ein Gemisch von zwei Elementen mit den Utomgewichten 54 und 56. Diese beiden Stoffe geben in ungleichen Mengen in das Bemisch ein. Das Durchschnittsatomgewicht der Mischung ift 55,84. Für Zinn hatte man nach chemischen Methoden das Atomgewicht 118,7 gefunden. Aber auch das gewöhnliche Zinn ift kein reines Element. Die Physiker haben erperimentell festgestellt. daß das gewöhnliche Zinn ein Gemisch von elf verschiedenen Stoffen ift, die alle dieselben chemischen Gigenschaften, aber febr verschiedene Utomgewichte haben. Der leichteste hat das Utomgewicht 112 und der schwerste 124. 3mischen den Atomgewichten der leichtesten und schwersten Notopen des Zinns besteht somit ein Unterschied von zwölf Einheiten. Die groben Abweichungen der Atomgewichte von der Ganzzahligkeit haben damif eine befriedigende Erflärung gefunden.

Die noch verbleibenden geringen Abweichungen erklärt man durch den foa. Dadungseffett. Beim Aufbau des Atomternes aus Protonen und Clettronen muß entweder Energie von außen zugeführt werden, um die Sonthese herbeizuführen, oder es wird überflussige Energie frei und dann gusgestrahlt. Der neugebildete Rern erfährt somit eine Bu- oder Ubnahme von Energie. Da nun nach der heutigen Physik auch der Energie eine Masse 311kommt, so ist diese Zu- oder Ubnahme von Energie im Atomkern einer Zuoder Abnahme von Masse gleichwertig. Diese Zu- oder Abnahme von Masse bei der Synthese, d. h. bei der Padung, der Rernbestandteile gegenüber der Gumme der Maffe der den Kern bildenden Protonen und Glektronen nennt man den Padungseffekt. Die unmittelbare Folge des Padungseffekts ift somit eine kleine Abweichung des auf Wasserstoff bezogenen Atomgewichtes von der Ganzzahligkeit. Als klassisches Beispiel gilt der Beliumkern (He), Das Utomgewicht von He ist 4. Der He-Kern ist aus 4 Protonen aufgebaut, denen zusammen die Masse 4 × 1,008 = 4,032 zukommt. Bei der Synthese von Ho geht somit 0.032 an Maffe verloren, die in Form von Energie ausgeftrable wird. Bang ähnliche Aberlegungen kann man bei den übrigen Elementen anstellen und so die noch verbleibenden kleinen Abweichungen von der Ganzzabligkeit erklären.

Die Physik lieferte also ein recht anschauliches Bild vom Aufbau der Materie. Allein bald stellten sich unüberwindliche Schwierigkeiten ein. Schon beim Heliumatom, das nur zwei Planetenelektronen besitzt, war es nicht möglich, Theorie und Erfahrung in Einklang zu bringen. Auch abgesehen davon bot die Theorie manches Schwerverständliche, z. B. das Auftreten der Größe k (das elementare Wirkungsquantum) in den Gleichungen. Das ist eine optische Größe, die aber hier auch als atommechanische Größe auftritt. Auch die Bevorzugung der gequantelten Elektronenbahnen im Atom war vom Standpunkte der klassischen Physik völlig unverständlich. Eine Befreiung aus dieser Krise glaubte man nur durch eine gründliche Revision der Grundprinzipien zu erreichen.

Im Jahre 1924 erschien eine Arbeit von L. de Broglie, die später (1927) auch ins Deutsche übertragen wurde 1, und die den Anstoß zu den neueren

Theorien in der Atomtheorie aab.

In der Optik war man bereits früher auf einen merkwürdigen Dualismus gestoßen. Gewisse Erscheinungen weisen entschieden auf eine korpuskulare Struktur des Lichtes hin, z. B. die Auslösung von Elektronen aus Metallen bei Bestrahlung mit Röntgenlicht oder mit z-Strahlen. Daneben gab es andere Erscheinungen, die sich ungezwungen vom Standpunkte der Wellentheorie deuten ließen, z. B. die Laueschen Interferenzerscheinungen beim Durchgange der Röntgenstrahlen durch Kristalle. Die neuen Ersahrungen drängten darauf hin, neben der Wellentheorie auch die so lange vernachlässigte und fast vergessene Korpuskulartheorie des Lichtes wieder einzusühren. Das geschah in ganz entschiedener Weise durch A. Einstein, der im Jahre 1905 seine Lichtquantentheorie schus. Das Licht hatte so den Charakter: Korpuskel-Welle.

L. de Broglie ging nun einen großen Schritt weiter. Er stellte sich die Frage, warum dieser Dualismus Korpuskel-Welle auf die Strahlung beschränkt sein sollte. Möglicherweise, so sagte er sich, besteht dieser Dualismus auch für die Materie. Nur hat man hier den entgegengesetzten Fehler gemacht, indem man zu viel an das Bild der Korpuskeln gedacht und das Bild der Wellen vernachlässigt hat. L. de Broglie ging bei seinen Untersuchungen von der Relativitätstheorie aus. Nach Einstein muß man seder Energie Masse und seder Masse Energie zuordnen. Beide sind immer mit-

einander durch die Beziehung

Energie = Maffe × c2

verbunden. Hier bedeutet c die Lichtgeschwindigkeit. Nach der Utom- und der Elektronentheorie ist die Materie nicht stetig, sondern aus kleinsten, voneinander getrennten Teilen aufgebaut. Somit müssen wir annehmen, daß auch die Energie in kleinen Bereichen konzentriert ist. Nach der Quantentheorie ist jedes Energiequant $h \times F$ requenz $h \times D$ e Broglie machte nun die Annahme, daß zufolge einem allgemeinen Naturgesetz mit jedem Energiestück von der Eigenmasse m_0 ein periodisches Phänomen von der Frequenz v_0 verbunden ist nach der Beziehung

 $hv_0 = m_0 e^2.$

Diese Hypothese ist die Grundlage der ganzen Theorie von De Broglie. Dann wird angenommen, daß das Teilchen mit der Masse mo sich mit der Geschwindigkeit v geradlinig und gleichförmig bewegt. De Broglie legt sich nun die Frage vor: In welcher Weise äußert sich die dem Teilchen zugeordnete Frequenz einem selbst nicht mitbewegten Beobachter? Die Untwort erteilt ihm die Relativitätstheorie. Uus den Transformationsgleichungen der speziellen Relativitätstheorie, angewandt auf das bewegte Teilchen, ergibt sich, daß wir dem Teilchen eine Welle zuordnen müssen. Diese Welle pflanzt sich mit Überlichtaeschwindigkeit fort und zwar in derselben Richtung, in der auch das

2 Untersuchungen zur Quantentheorie 11.

¹ Untersuchungen zur Quantentheorie von L. de Broglie. Ubersett von W. Beder. Zwei Jahre später, 1929, erschien das Buch: Einführung in die Wellenmechanik von L. de Broglie. Übersett von R. Peierls. Beide Veröffentlichungen bei der Akad. Verlagsgeselstich., Leipzig.

Teilchen sich bewegt. Die Fortpflanzungsgeschwindigkeit V der Welle ist um so größer je kleiner die Geschwindigkeit v des Teilchens ist. Beide Geschwindigkeiten sind miteinander durch die sehr einsache Gleichung $V=\frac{c^2}{v}$ verbunden, wo c die Lichtgeschwindigkeit ist. Auch die Frequenz v (= Anzahl der Schwingungen in 1 Sekunde) und die Wellenlänge λ ließen sich berechnen. Es ist nun sehr wichtig, daß die Gleichungen, die De Broglie für v und λ erhielt, in die Grundgleichungen der Lichtquantentheorie von Einstein übergehen, wenn die Geschwindigkeit v des Teilchens gleich der Lichtgeschwindigkeit v wird. Daraus hat De Broglie geschlossen, daß diese Gleichungen für v und v so allgemein sind, daß sie sowohl sür Materie wie sür Strahlung gelten und in beiden Fällen die Notwendigkeit zum Ausdruck bringen, gleichzeitig von Wellen und von Korpuskeln zu reden.

Bisher haben wir nur von einer Welle geredet. Jest betrachten wir den Kall, wo wir eine große Zahl von Wellen haben, die fich alle in derfelben Richtung fortpflanzen. Bon diefen Wellen nehmen wir an, daß die Frequenzen der einzelnen Wellen fich nur fehr wenig voneinander unterscheiden, d. b. daß fie nahezu einander gleich find. Die Besamtheit fo beschaffener Wellen nennt man eine "Wellengruppe". Die Phafen (= Bewegungszuftand) fämtlicher Wellen follen nun zu einer bestimmten Zeit an einem bestimmten Punkte übereinstimmen. Un diesem Punkte werden fich dann in diesem Augenblicke alle Wellen gegenseitig verftärken. Die resultierende Umplitude (= Musschlag. Wellenhöhe) wird hier besonders groß werden. Es entsteht ein schmaler hoher Budel in der Wellengruppe. Dieses Maximum, dieser Budel schreitet dann in der Richtung voran, in der sich die Wellen ausbreiten. Allein die Geschwindigkeit U, mit der der Buckel fortschreitet, ist kleiner als die Fortpflanzungsgeschwindigkeit der Wellen. Man bezeichnet U als die Geschwindigfeit der Wellengruppe. De Broglie konnte nun den mathematischen Beweis erbringen, daß die Gruppengeschwindigkeit U der dem bewegten Teilchen guzuordnenden Wellen gerade gleich der mechanischen Geschwindigkeit v des Teilchens ist.

Bisher haben wir nur den Fall der gleichförmigen, geradlinigen Bewegung betrachtet. De Broglie untersuchte auch den Fall eines nicht gleichförmig, geradlinig bewegten Teilchens. Es gelang ihm dabei, das oberste Prinzip der Mechanik in das oberste Prinzip der Optik überzuführen. Das war ein wichtiges Ergebnis für eine Verallgemeinerung der Mechanik. Es war eine Verbindung zwischen Mechanik und Optik gefunden. Die Unwendung der neuen Vorstellungen auf die periodische Bewegung eines Elektrons im Bohrschen Utommodell brachte die bis dahin so rätselhaften Stabilitätsbedingungen dem Verständnisse näher. De Broglie konnte sie aus seiner Theorie ableiten.

Wenn wir nicht wie bisher ein einzelnes Teilchen, sondern einen ganzen Schwarm von Teilchen, etwa einen Schwarm von Elektronen untersuchen, die sich alle in derselben Richtung mit derselben Geschwindigkeit bewegen, so ergibt sich, daß man diesem Schwarm eine ebene monochromatische Welle zuordnen muß, d. h. alle Wellen, die diesem Bündel angehören, müssen dieselbe Wellenlänge haben. Treffen diese Wellen auf ein Medium von regelmäßiger Struktur, z. B. auf einen Kristall, dann müssen sie gebeugt werden, und in

Ieicht zu berechnenden Richtungen müssen die Streuwellen Maxima zeigen. Nach der neuen Theorie muß man deshalb erwarten, daß ein Schwarm von Elektronen, die sich in derselben Richtung mit gleichen Geschwindigkeiten bewegen, Erscheinungen analog der Interferenz und der Beugung des Lichtes zeige. Diese Experimente wurden mit großer Sorgfalt von verschiedenen Forschern angestellt. Die Übereinstimmung zwischen Theorie und Experiment war ganz ausgezeichnet. Diese Versuche liefern somit den experimentellen Beweis für die Notwendigkeit, die Korpuskularvorstellung auch für die Materie durch die Wellenvorstellung zu ergänzen.

Ungeregt durch die Ideen De Broglies nahm Schrödinger 1 das Quantifferungsproblem der Energie im Utome in Angriff (1926). Es schwebte ihm aber noch ein höheres, allgemeineres Ziel vor Augen. Er wollte eine Theorie ichaffen, die beides umfaßt: die gewöhnlichen mechanischen Erscheinungen, mo Quantenbedingungen feine merkliche Rolle fpielen, und anderfeits die topischen Quantenphänomene. Aus seiner Mechanik hoffte er einerseits die gewöhnliche Mechanit als eine Unnäherung, die die groben matromechanischen Ericheinungen beschreibt, wieder zu erhalten und anderseits auch eine Erklärung für diejenigen feinen "mikromechanischen" Phanomene (Bewegung der Glektronen im Utom) zu gewinnen, für die die alte Mechanik überhaupt keine Erklärung zu geben vermochte; wenigstens nicht, ohne fehr künftliche Busakannahmen, die in Wirklichkeit einen weit wesentlicheren Teil der Theorie bildeten als die eigentliche mechanische Behandlung?. Ebenso wie bei De Broglie tritt bei Schrödinger die Welle in den Mittelpunkt der Behandlung. Beide Theorien, die von De Broglie und die von Schrödinger faßt man deshalb unter dem einen Namen: Wellen mechanif gufammen. In der Behandlung des Problems weichen die beiden Forscher erheblich voneinander ab. De Broalie war von der Relativitätstheorie ausgegangen und fakte feine Materiewellen als fortschreitende Wellen auf. Schrödinger stellte fich von pornherein auf den Boden der flafifchen (d. h. der althergebrachten) Mechanik. Geine Bleichungen führen ihn auf stebende Wellen (stebende Gigenschwingungen). Schrödinger geht bom oberften Pringip der Mechanif aus und zeigt. daß unter bestimmten Voraussegungen dieses Prinzip in das oberfte Prinzip der Optik übergeführt werden kann. Wie oben erwähnt, war De Broglie ebenfalls zu diesem Ergebniffe gekommen. Geometrische Optik und Mechanik waren fo in Busammenhang gebracht. Der Grundgedanken der Wellenmechanik ift nun folgender: "Das Phanomen, für das die klassische Mechanik eine adäquate Beschreibung dadurch zu geben glaubte, daß fie die Bewegung eines Maffenpunktes beschrieb, d. h. daß fie feine Roordinaten x, y, z als Funktionen der Zeitt betrachtete, dieses Phänomen muß — nach den neuen Vorstellungen durch eine Wellenbewegung beschrieben werden, die sich aus Wellen von beftimmter Frequenz und Geschwindigkeit zusammensest." 3 Die Durchführung im einzelnen muß bier übergangen werden.

* Bier Borlefungen 5 u. 6.

¹ E. Schrödinger, Abhandlungen zur Wellenmechanif (Leipzig 1927) 12.

⁸ С. Schrödinger, Bier Borlefungen über Wellenmechanit (Berlin 1928) 7 и. в.

Die Anwendung dieser Ideen auf ein einzelnes Teilchen führte zu einer Differentialgleichung, die die Grundlage der ganzen Schrödingerschen Theorie bildet 1. Sie ist der mathematische Ausdruck für eine Welle. Die Gleichung enthält eine Größe w, deren Deutung umftritten ift, die Gesamtenergie E, die konftant, und die potentielle Energie V, die veränderlich ift. Gie gehört einem Gleichungstypus an, der zu einer Zeit, als noch niemand an die gegenwärtige Unwendung denken konnte, von den Mathematikern sehr eingehend untersucht worden war. Die Gleichung hat die wichtige Eigenschaft, nur für ganz bestimmte, distrete Werte von V eindeutige und stetige Lösungen zu besigen. Diese Werte von V nennt man die Eigenwerte der Gleichung, Da nun V die potentielle Energie darstellte, so war es Schrödinger gelungen, das physikalische Problem der Quantelung der Energie auf ein rein mathematisches Problem zurudzuführen. Die Unnahme von Pland, daß die Ubertragung der Energie bei der Strahlung tein kontinuierlicher Vorgang sei, sondern nur in gang bestimmten, wohl definierten Beträgen erfolge, war fo dem Berftandniffe näher gebracht. Auch der Doppelcharakter von h (= elementares Wirkungsquantum) wurde verständlich, da h in der Fundamentalgleichung auftritt. Wendet man die Gleichung auf das Wasserstoffatom an, so stimmen die Energiewerte, die fich ergeben, vollkommen mit denen überein, die Bohr bereits im Jahre 1913 auf andere Weise berechnet hatte. Die Theorie von Schrödinger hat viele und große Erfolge gehabt, auf die hier nicht eingegangen werden foll.

Was bedeutet die Dualität: Welle - Korpustel? Um Anfang seiner Urbeiten 2 hat Schrödinger den Gedanken ausgesprochen, die Korpuskeln ließen fich als Gruppen von Wellen, als Wellenpakete deuten. Allein diese Vorftellung läßt sich nicht allgemein durchführen. Bei der Beugung eines Elektrons an einem Kriftall würde das Wellenpaket vollständig zerftreut und aufgelöft werden. Die Undurchführbarkeit der Unficht Schrödingers tritt noch klarer hervor, wenn man es nicht nur mit einem Elektron, sondern mit einem Schwarm von N-Elektronen zu tun hat. Um der mathematischen Schwierigkeiten Herr zu werden, ordnet Schrödinger nicht jedem Elektron eine Welle im dreidimensionalen Raume zu, wie man vielleicht erwartet, sondern allen N-Clettronen eine einzige Welle, aber diese Welle ift im drei N-dimensionalen Raume (Konfigurationsraum). Das wäre nun fehr schön und gut, wenn es nachträglich gelänge, diefe eine Welle in N. Wellen im dreidimenftonalen Raume zurückzutransformieren. Das will aber nicht gelingen. hierin fieht De Broglie ein neues Argument, daß die Materiewelle keine physikalische Realität hat. Huch Schrödinger felbst ift nicht mehr davon überzeugt, daß die Materienwelle eine Welle im landläufigen Ginne des Wortes feit. Er gibt damit aber keineswegs den Gedanken auf, daß der Welle ein physikalischer Vorgang entspricht. Die Große w in seiner Gleichung glaubt er physikalisch dahin deuten zu können, daß w2 der elektrischen Ladungsdichte proportional ift, die gemäß den Besegen der gewöhnlichen Clektrodynamik Emission bon

 $^{^{1}\}Delta\psi + \frac{8\pi^{2}m}{h^{2}}(E-V)\psi = 0.$

² Abhandlungen zur Wellenmechanit 60.

⁴ Bier Vorlefungen ac. 6.

⁸ Ginführung in die Wellenmechanit 165.

Licht verursacht. Die Welle selbst, d. h. der physikalische periodische Vorgang, wäre dann eine Schwankung dieser elektrischen Ladungsdichte?

L. de Broglie bespricht in seiner Wellenmechanik noch zwei andere Deutungen, die der Welle einen physikalischen Charakter zuerkennen. In beiden Fällen kommt er jedoch zu dem Ergebnis, daß die betreffenden Anschauungen sich nicht durchführen lassen. Wir erhalten somit das etwas unbefriedigende Resultat, daß es mindestens zweiselhaft ist, ob die Materiewellen physikalische Realitäten sind. Wir müssen uns nach einer andern möglichen Deutung der Wellen umsehen.

Als die Wellenmechanik noch im Anfange ihrer Entwicklung stand, hat Max Born bereits den Vorschlag gemacht, die Welle so zu deuten, daß sie nur die Wahrscheinlichkeit dafür darstellt, daß das Teilchen einen gewissen Bewegungszustand besigt. Eine Wahrscheinlichkeit kann als eine kontinuierliche Größe aufgefaßt werden. Sie kann deshalb auch durch eine Differentialgleichung und durch eine Welle dargestellt werden. Diese Auffassung hat heute die meisten Anhänger. Sie wurde von Heisenberg und Bohr weiter entwicklt. Nach diesen beiden Forschern ist die y-Welle überhaupt kein physikalischer Vorgang, der sich in einem gewissen Gebiet abspielt, sondern nur eine symbolische Darstellung von dem, was wir über das Teilchen wissen.

Nach Heisenberg's weist die Materie eine merkwürdige Doppelnatur auf, indem ihr Verhalten einmal dem Verhalten von Wellen, ein anderes Mal dem von Korpuskeln gleicht. Nun ift es flar, fagt Beisenberg, daß die Materie nicht gleichzeitig aus Wellen und Partikeln bestehen kann, die beiden Vorstellungen sind viel zu verschieden. Bielleicht ift die Lösung der Schwierigkeit darin zu suchen, daß beide Bilder (Partikel- und Wellenbild) nur ein Recht auf Unalogie beanspruchen können, die manchmal zutreffen und manchmal verfagen. Beide können als Unalogien nur in gewiffen Grenzfällen Gültigkeit beanspruchen; als Ganzes sind aber Atomphänomene nicht unmittelbar in unserer Sprache beschreibbar. Es ift auch keineswegs merkwürdig, daß unsere Sprache bei der Beschreibung atomarer Prozesse versagt; denn ihre Begriffe geben auf die Erfahrungen des täglichen Lebens zurud, in denen wir ftets mit großen Mengen von Atomen zu tun haben, jedoch nie einzelne Atome beobachten. Für atomare Prozesse haben wir also keine Unschauung. Für die mathematische Ordnung der Phänomene ift glücklicherweise eine solche Unschauung auch gar nicht nötig; wir besiten in der Quantentheorie ein mathematisches Schema, das allen Experimenten der Utomphysik gerecht wird. Das Partikelbild und das Wellenbild find zwei verschiedene Erscheinungsformen ein und derfelben physikalischen Realität. Diese Tatsache bildet das zentrale Problem der Quantentheorie.

Geht man von der Welle als dem Gegebenen aus, so ergibt sich die Grenze für die Unwendbarkeit des Partikelbildes. Man wird auf gewisse Unbestimmtheitsrelationen geführt. Es zeigt sich nämlich, daß es prinzipiell unmöglich ist, gleichzeitig für dasselbe Teilchen Ort und Bewegungszustand mit absoluter Genauigkeit zu bestimmen. Verfeinert man die Mehmethode, um

¹ A. a. D. 19. 2 Abhandl. zur Wellenmechanik 165.

^{8 33.} Beifenberg, Die physikalischen Pringipien ber Quantentheorie (Leipzig 1930) 7.

den Ort des Teilchens genauer zu bestimmen, dann wird in gleichem Grade die Bestimmung des Bewegungszustandes ungenauer und umgekehrt. Seht man vom Partikelbilde aus, so wird man auf die Grenzen der Anwendbarkeit des Wellenbildes geführt, und man erhält entsprechende Unbestimmtheitsrelationen für die Größen im Wellenbilde. Diese Unbestimmtheitsrelationen gelten nur für quantentheoretische Größen der Atomphysik. Sie sind prinzipielle Ungenauigkeiten, die sich durch keine Verseinerung der Meßtechnik vermeiden oder vermindern lassen, wie die mehr zufälligen Ungenauigkeiten, die von der Unvollkommenheit der Meßmethode herstammen, und sich verringern oder durch Rechnung eliminieren lassen. Da es so prinzipiell unmöglich ist, für ein Teilchen gleichzeitig Anfangslage und Anfangsbewegungszustand mit absoluter Genauigkeit festzustellen, so ist die wesentliche Voraussezung für eine streng deterministische Behandlung der atomaren Vorgänge nicht gegeben, und wir müssen uns mit statistischen Gesesen in der Atomphysik begnügen.

Bei der Aufstellung seiner Quantenmechanit ging Beisenberg so bor (1925). Er verzichtete von vornherein auf alle Unschaulichkeit und benütte nur folche Größen, die der direkten Beobachtung zugänglich find. Geine Theorie wird deshalb auch gang und gar unanschaulich. Un Stelle der unkontrollierbaren Elektronenbahnen ließ er nur die Frequenzen und die Intensitäten der Spektrallinien und die Energieftufen der Utome gelten, wie fie etwa Berfuche über Cleftronenftoge liefern. Mus diefen megbaren Großen bildete er dann Rechengrößen, die an die Stelle der Koordinaten (Ortsbestimmung) und der Geschwindigkeiten der Elektronen treten sollten. Zwischen diesen Rechengrößen fuchte er Beziehungen herzustellen, die eine Gewinnung ber Quantisierungsvorschriften gestatten. Die periodisch veränderlichen Elektronenkoordinaten ersekte er durch ein augdratisches Schema von Partialschwingungen (Matrix), deren Frequenzen mit den Schwingungszahlen der Spektrallinien übereinftimmen, und deren Umplituden für die Linienintensität maggebend find. Für dieses Schwingungsschema legte Beisenberg die Rechenregeln fest. Dbichon nun Seisenberg weder vom Wellen- noch vom Partikelbilde ausging, so eristiert doch in seinem mathematischen Apparat eine vollkommene Unalogie zu dieser Doppelnatur der Atomphänomene. Sie besteht darin, daß ein und dasselbe mathematische Schema einmal als Quantentheorie des Partikelbildes, einmal als Quantentheorie des Wellenbildes interpretiert werden kann. Dbwohl die klassischen Theorien vom Partikelbild und vom Wellenbilde absolut verschieden sind, sowohl in ihrem mathematischen wie in ihrem physikalischen Gehalt, sind die Quantentheorien der beiden Vorstellungen mathematisch und physikalisch identisch.

Die Heisenbergsche Quantenmechanik hat sich als sehr leistungsfähig für die Behandlung von Utomproblemen erwiesen. Ihre Unwendbarkeit wurde noch bedeutend vergrößert, als es Born und Jordan gelang, in der Matrizenrechnung einen geeigneten mathematischen Upparat für die allgemeine Durchführung der Heisenbergschen Ideen zu schaffen. Die so vervollständigte Quanten-

mechanif nennt man Matrizenmechanif.

Rurz erwähnt sei noch die Diracsche Theorie des Elektrons. Dirac steht auf dem Boden der Relativitätstheorie. Es ist ihm gelungen, ein System von Differentialgleichungen erster Ordnung aufzustellen, die das Verhalten

des Elektrons im elektromagnetischen Feld vom Standpunkte der Wellenmechanik beschreiben. In erster Unnäherung liefern diese Gleichungen die Schrödingersche Grundgleichung. Die Kreiselbewegung (Spin) des Elektrons, die man bereits im Jahre 1925 in das Utommodell eingeführt hatte, ergibt sich mit Notwendigkeit aus der neuen Theorie.

Bei einem Rüchblick auf den Entwicklungsweg der Utomtheorie feben wir dunkle Unfänge bei griechischen Philosophen vor mehr als zweitausend Jahren. Faft zweitausend Jahre lang blieben Philosophen ihre Suter und Begner. Allein die Entwicklung war fast Rull. Die rein philosophischen Methoden versagten. Aber einige wenige Aussagen kam man nicht hinaus. Dann folgte die Zeit des Aufblühens der Naturwiffenschaften. In den Banden der Chemiker entwickelte die Atomtheorie fich rasch und kräftig. Man entdeckte die Verschiedenheit der Elemente, ftudierte ihre Gigenschaften, ihre gegenseitigen Berwandtschaften. Die Utomgewichte wurden mit großer Genauigkeit bestimmt und dienten als Grundlage des periodischen Spitems. Noch manche andere schöne Erfolge ließen fich namhaft machen. Uber in einem wesentlichen Punkte vermochte die Chemie mit ihren Methoden nicht weiterzukommen. Die große Frage nach dem innern Bau des Utoms konnte fie nicht beantworten. Wohl hatte fle gewiffe Vermutungen, aber es waren doch nur Vermutungen. Hier feste nun die Physik mit ihren tiefer greifenden Mitteln ein. Die Utomtheorie, einst das unbeftrittene Bebiet der Chemie, wurde ein Spezialgebiet der Physit. Ihr find die großen Erfolge der legten dreißig Jahre zu verdanken. Der danische Physiker N. Bohr schenkte uns das anschauliche Utommodell mit seinem Bentralkörper und den ihn umkreisenden Glektronen. Allein der heutige Phyfifer ift auch Mathematiter. In den Sänden der mathematischen Physiter verblaffen die anschaulichen Bilder mehr und mehr. Un ihre Stelle treten Bleichungen und mathematische Symbole, eine Urt Geheimschrift für den Uneingeweihten. Es sieht fast aus, als ob die Natur ihr Untlig mit einem Schleier aus Mathematit verhüllen muffe. Alle Unzeichen fprechen dafür, daß wir das Ende diefer Mathematisierung der Atomtheorie und der Physik überhaupt noch lange nicht erreicht haben. Man fagt uns, Partikelbild und Wellenbild seien zwei verschiedene Erscheinungsformen ein und derfelben physikalischen Realität. Aber was ift lettlich diese physikalische Realität?

Adolf Steichen S. J.