tungsrecht der Kinder. Allerdings bietet das Bürgerliche Gesetzbuch keine hinreichende Grundlage für eine Taschengeld-Verpflichtung der Eltern. Die "Dienstleistungspflicht" des Kindes im Haushalt, verstanden als Zwang statt als partnerschaftlich ausgehandelte Solidarität, hält Feil für einen rechtspolitischen Anachronismus, "weil sie im Gegensatz zur partnerschaftlich organisierten Familie steht" (203).

Welche Möglichkeiten, Geld zu verdienen und damit Marktteilnehmer zu werden, haben Heranwachsende? Nach Feil wollen Gesetzgeber und Gesellschaft einerseits die Kinderarbeit verbieten, anderseits "zulässige Beschäftigungen" anerkennen. Da Kinderarbeit nicht mehr Ausdruck von materieller Not und elterlichem Zwang ist, sondern dem Geldverdienen auf dem Weg zur Selbständigkeit dient, wird sie toleriert: "Wenn Kinder freiwillig arbeiten, scheint weder

schlechte Bezahlung, noch der Wegfall des pädagogischen Werts der Arbeit ein Problem zu sein, der bis heute die Kinderarbeit legitimierte" (238).

In einem abschließenden Kapitel faßt die Autorin ihre Beobachtungen nochmals zusammen, indem sie sie mit Ansätzen und Tendenzen der aktuellen Kindheitssoziologie, Sozialgeschichte, Kinderrechtsbewegung und Sozialphilosophie konfrontiert und fragt, wie sich die beschriebene Integration des Kindes in den Markt auf seine allseits erstrebte Autonomie auswirkt. Abwägend und verantwortungsbewußt plädiert sie dafür, über dem visionären Projekt des autonomen Kindes die Eigendynamik des Marktes und die faktische Unselbständigkeit des Kindes nicht aus den Augen zu verlieren. Eine anspruchsvolle, aber überzeugende Analyse. Bernhard Grom SI

Naturwissenschaften

GÖRNITZ, Thomas – GÖRNITZ, Brigitte: *Der kreative Kosmos*. Geist und Materie aus Information. Heidelberg: Spektrum, Akademischer Verlag 2002. VII, 407 S. Gb. 29,95.

Mit diesem Buch versuchen die beiden Autoren aus einer Synthese verschiedener Wissensgebiete (vor allem Quantenphysik, Medizin, Psychologie) eine umfassende Weltsicht zu entwickeln: "Wir verfolgen in diesem Buch das Ziel, die Information zu einer objektiven Größe werden zu lassen, die schließlich den Platz einer .Grundsubstanz der Welt' einnehmen soll" (68). Durch eine dynamische "Schichtenstruktur" der Naturbeschreibung, deren Schichten aus klassischer Physik und aus Quantentheorie bestehen, die in jeweils eigener Weise mit dem Konzept der "Information" verbunden sind, werden sowohl die grundlegenden physikalischen Eigenschaften des Kosmos als auch Leben und Bewußtsein erklärt. Dazu wird viel solides Wissen über die moderne Wissenschaft referiert und in einer kreativen und spannenden Weise verknüpft: Physik, Neurophysiologie, Psychologie.

So interessant und bedenkenswert der Ansatz ist, so sehr leidet die Durchführung und Begründung an zahlreichen Ungenauigkeiten und Inkonsistenzen. Fünf Punkte betreffen das Konzept von "Information": 1. Die Autoren sprechen der Information einen "obiektiven und absoluten Status" zu und begründen dies damit, daß sich der Informationsgehalt von Materie mit dem Informationsverlust messen lasse, wenn diese in ein schwarzes Loch mit der Masse des Universums falle, weil schwarze Löcher die Zustände mit maximaler Entropie seien (115). Nun sind schwarze Löcher gerade nicht die physikalischen Zustände mit höchster Entropie, sonst würden sie keine Strahlung aussenden (von der auf S. 118f. auch ausführlich die Rede ist). Auch ist der Bezug auf die Masse des Universums nicht mit den neueren kosmologischen Daten vereinbar, die auf eine unendliche Ausdehnung (und damit auch Masse) des Universums hindeuten.

2. Die Autoren setzen sich von Carl Friedrich von Weizsäckers Begriff der Information ab (und müssen das auch für ihre Argumentation), daß diese nur relativ auf zwei semantischen Ebenen definiert werden kann (73). Es wird aber nicht klargestellt, inwiefern Weizsäckers Analyse nicht zutreffend sein soll.

- 3. Unklar bleibt der Zusammenhang von Information und Entropie, zum Beispiel wenn der kosmische Entwicklungsgang als eine "Ausformung von immer neuen Gestalten", als "Ausdifferenzierung des "Weltsubstrates" (also der Information) bezeichnet wird (vgl. 311, 5), und wenn dieser Begriff gleichermaßen auf die Formung von Galaxien, Sternen usw. (was mit Entropiezunahme verbunden ist) und auf die Entstehung von Lebewesen (was lokal mit Entropieabnahme verbunden ist) angewandt wird.
- 4. Das Qualia-Problem, also die Frage, wie Erleben mit seiner materiellen Basis im Gehirn zusammenhängt, wird von den Autoren in diesem Zusammenhang ausdrücklich aufgegriffen. Die Lösung, Bewußtsein und Erleben als "selbstbezügliche Information" (12. Kap.) aufzufassen, krankt aber an demselben Kategorienproblem (Erleben ist nicht Information) wie die materialistische Lösung, die sie ausdrücklich ablehnen.
- 5. Zur Erklärung des Selbstbewußtseins postulieren die Autoren eine Selbstbezüglichkeit von Information, die möglich sei, weil die betreffenden quantenmechanischen Zustandsräume unendlichdimensional seien (vgl. 317). Anderseits wird eine Berechnung für die Zahl der Qubits im Kosmos vorgestellt, die in dieser Theorie gerade die maximale Zahl von Dimensionen eines quantenmechanischen Systems begrenzt (vgl. 385 ff.).

Gleichsam vom Himmel fällt die immer wieder bekräftigte Feststellung, Leben müsse als ein "makroskopischer individueller Quantenprozeß" (313) verstanden werden. Erst mit dem Tod werde dieser Quantenzustand ganz reduziert. Zur Begründung werden in erster Linie unerklärte Leistungen des Gehirns (schnelles Einschwingen von neuronalen Netzen, Bindungsproblem) angeführt, die nur dadurch erklärt werden könnten, daß dabei "Quantencomputing" stattfinde. Außerdem könne man davon ausgehen, daß Lebenwesen aufgrund der Evolution alle Möglichkeiten der Informationsverarbeitung, und eben auch Quantencomputing, ausnützen.

In diesem Zusammenhang müßten mindestens die alternativen Erklärungen (eben durch die Eigenarten neuronaler Netze) dargestellt werden. Aus der Literatur (z.B. Roger Penrose,

den die Autoren sogar zitieren) ist bekannt, daß Quantencomputing nur durch extrem gute Isolierung der betreffenden Systeme von der Außenwelt überhaupt möglich ist, was für biologische Systeme ein extrem schwieriges Problem darstellt. Dieses Problem wird in bezug auf das Gehirn von den Autoren nur gestreift (Abschnitt 12.2.2) und es bleibt völlig unverständlich, wie eine solche Isolierung für Lebewesen als Gesamtheit (während der gesamten Lebenszeit!) aussehen könnte.

Neben solchen grundlegenden Argumentationslücken fallen beim Lesen auch zahlreiche Ungenauigkeiten auf. Nur einige Beispiele: Katalvsatoren verschieben Gleichgewichtsreaktionen nicht "nach einer Seite", sondern beschleunigen sie nur (46). Die Zusammensetzung von Teilen geschieht in der Ouantenphysik nicht durch das "direkte Produkt" (97), sondern durch das Tensorprodukt. Die Relativitätstheorie ist nicht nur "eine konsequente Ausformung der klassischen Elektrodynamik" (97). Es ist auch nicht "vollkommen absurd" (123), Protonen und Neutronen als aus Ouarks zusammengesetzt zu beschreiben, wenngleich es richtig ist, diese Sprechweise zu kritisieren. Die Wahrscheinlichkeit von quantenmechanischen Zuständen wird durch das Betragsquadrat des Skalarprodukts, nicht durch das Skalarprodukt gemessen (378). Die These der Autoren ist interessant und verdient es, ernst genommen zu werden. Leider leidet ihr Buch aber an den genannten Argumentationslücken und Ungenauigkeiten.

Stefan Bauberger SI

Schrenk, Friedemann – Bromage, Timothy G.: Adams Eltern. Expeditionen in die Welt der Frühmenschen. München: C. H. Beck 2002. 256 S., 130 meist farbige Abb. 19.90.

An Büchern über den Ursprung des Menschen herrscht kein Mangel, und das Interesse des breiten Publikums wird in regelmäßigen Pressemeldungen über neue Sensationsfunde wachgehalten. Dennoch sticht das vorliegende Buch beides aus: die Vielzahl der Konkurrenten und den Effekt sensationeller Darstellung. Es ist der überaus packende Bericht der Entdeckung des mit 2, 5 Millionen Jahren ältesten Früh-